
Numerical methods of chaos detection

Haris Skokos
Department of Mathematics and Applied Mathematics

University of Cape Town

Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za – haris.skokos@gmail.com
URL: http://math_research.uct.ac.za/~hskokos/

20th Christmas Symposium of Physicists of the University of Maribor

14 December 2023, Maribor, Slovenia



University of Cape Town (UCT)



University of Cape Town (UCT)



Cape Town



Outline
• Dynamical Systems

✓ Hamiltonian models – Variational equations

✓ Symplectic maps – Tangent map

• Brief presentation of chaos detection methods 

• Chaos Indicators

✓ Lyapunov exponents

✓ Smaller ALignment Index – SALI

• Definition

• Behavior for chaotic and regular motion

• Applications

✓ Generalized ALignment Index – GALI

• Definition - Relation to SALI

• Behavior for chaotic and regular motion

• Application to time-dependent models

• Chaos diagnostics based on Lagrangian descriptors (LDs)

• Summary



Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous

Hamiltonian system having a Hamiltonian function of the

form:

H(q1,q2,…,qN, p1,p2,…,pN)

The time evolution of an orbit (trajectory) with initial

condition

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0))

positions momenta

is governed by the Hamilton’s equations of motion

𝐝𝐩𝐢

𝐝𝐭
= −

𝛛𝐇

𝛛𝐪𝐢
 ,

𝐝𝐪𝐢

𝐝𝐭
=

𝛛𝐇

𝛛𝐩𝐢



Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

Variational Equations

We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The

deviation vector from a given orbit is denoted by

v = (δx1, δx2,…,δxn)T , with n=2N

The time evolution of v is given by 

the so-called variational equations:

𝐝𝐯

𝐝𝐭
= −𝐉 ⋅ 𝐏 ⋅  𝐯

𝐉 =
𝟎𝐍 −𝐈𝐍

𝐈𝐍 𝟎𝐍
, 𝐏𝐢𝐣 =

𝛛𝟐𝐇

𝛛𝐱𝐢𝛛𝐱𝐣
 𝐢, 𝐣 = 𝟏, 𝟐, … , 𝐧

where



Symplectic Maps

The evolution of an orbit with initial condition

P(0)=(x1(0), x2(0),…,x2N(0))

is governed by the equations of map T

P(i+1)=T P(i)  ,  i=0,1,2,… 

The evolution of an initial deviation vector

v(0) = (δx1(0), δx2(0),…, δx2N(0))

is given by the corresponding tangent map

𝐯(𝐢 + 𝟏) = ቤ
𝛛𝐓

𝛛𝐏
𝐢

⋅ 𝐯(𝐢) , 𝐢 = 𝟎, 𝟏, 𝟐, …

Consider an 2N-dimensional symplectic map T. In this

case we have discrete time.



Chaos detection techniques

• Based on the visualization of orbits

✓ Poincaré Surface of Section (PSS)

✓ the color and rotation (CR) method

✓ the 3D phase space slices (3PSS) technique 



Poincaré Surface of Section (PSS)
We can constrain the study of an N+1

degree of freedom Hamiltonian system

to a 2N-dimensional subspace of the

general phase space.

In this sense an N+1 degree of freedom

Hamiltonian system corresponds to a

2N-dimensional symplectic map. Lieberman & Lichtenberg, 1992, Regular and Chaotic 

Dynamics, Springer.

Chaotic 

motion

Regular 

motion

The 2D Hénon-Heiles system:



The color and rotation (CR) method
For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic

maps:

We consider the 3D projection of the PSS and use color to indicate the 4th

dimension.

Katsanikas & Patsis, Int. J. Bif. Chaos (2011)



The 3D phase space slices (3PSS) 

technique
For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic

maps:

We consider thin 3D phase space slices of the 4D phase space (e.g. |p2| ≤ ε)

and present intersections of orbits with these slices.

Richter et al., Phys. Rev. E (2014)



Chaos detection techniques

• Based on the visualization of orbits

✓ Poincaré Surface of Section (PSS)

✓ the color and rotation (CR) method

✓ the 3D phase space slices (3PSS) technique 

• Based on the numerical analysis of orbits

✓ Frequency Map Analysis

✓ 0-1 test



Frequency Map Analysis
Create Frequency Maps by computing the fundamental frequencies of orbits.

Regular motion: The computed frequencies do not vary in time

Chaotic motion: The computed frequencies vary in time

Papaphilippou & Laskar, Astron. Astrophys. (1998)

Steier et al., Phys. Rev. E (2002)



Frequency Map Analysis

Stability of Trojan asteroids, (α, e) 
diagram [Robutel & Gabern, MNRAS 
(2006)]

Dynamics of the European Synchrotron Radiation Facility (ESRF) storage ring 
[S. et al., 2004, in Proc. of the 9th European Particle Accelerator Conf. (EPAC)]



Chaos detection techniques

• Based on the visualization of orbits

✓ Poincaré Surface of Section (PSS)

✓ the color and rotation (CR) method

✓ the 3D phase space slices (3PSS) technique 

• Based on the numerical analysis of orbits

✓ Frequency Map Analysis

✓ 0-1 test

• Chaos indicators based on the evolution of deviation vectors from 

a given orbit

✓ Maximum Lyapunov Exponent (MLE)

✓ Fast Lyapunov Indicator (FLI) and Orthogonal Fast Lyapunov

Indicators (OFLI and OFLI2)  

✓ Mean Exponential Growth Factor of Nearby Orbits (MEGNO)

✓ Relative Lyapunov Indicator (RLI)

✓ Smaller ALignment Index  – SALI

✓ Generalized ALignment Index  – GALI



Maximum Lyapunov Exponent (MLE)

Roughly speaking, the MLE of a given orbit characterizes the mean exponential 

rate of divergence of trajectories surrounding it. 

Chaos: sensitive dependence on initial conditions.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) 

and an initial deviation vector (small perturbation) from it v(0).

Then the mean exponential rate of divergence is: 

MLE= 𝝀𝟏 = lim
𝒕→∞

𝚲 (𝒕) = lim
𝒕→∞

𝟏

𝒕
ln

𝒗(𝒕)

𝒗(𝟎)

λ1=0 → Regular motion (𝚲 ∝ 𝒕−𝟏)

λ1>0 → Chaotic motion



The 

Smaller ALignment Index  

(SALI) 

method



Definition of the SALI

We follow the evolution in time of two different initial

deviation vectors (v1(0), v2(0)), and define SALI [S., J.

Phys. A (2001) – S. & Manos, Lect. Notes Phys. (2016)] as:

When the two vectors become collinear

SALI(t) → 0

SALI(𝐭) = 𝐦𝐢𝐧 ො𝐯𝟏(𝐭) + ො𝐯𝟐(𝐭) , ො𝐯𝟏(𝐭) − ො𝐯𝟐(𝐭)

ො𝐯𝟏(𝐭) =
𝐯𝟏(𝐭)

𝐯𝟏(𝐭)

where



Behavior of SALI for chaotic motion

For chaotic orbits the two initially

different deviation vectors tend to

coincide with the direction defined

by the maximum Lyapunov

exponent.
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Behavior of the SALI for chaotic motion

𝐇 = ෍

𝐢=𝟏

𝟑
𝛚𝐢

𝟐
(𝐪𝐢

𝟐 + 𝐩𝐢
𝟐) + 𝐪𝟏

𝟐𝐪𝟐 + 𝐪𝟏
𝟐𝐪𝟑

We test the validity of the approximation SALI∝ 𝒆− 𝝀𝟏−𝝀𝟐 𝒕 [S. et al.,
J. Phys. A (2004)] for a chaotic orbit of the 3D Hamiltonian

with ω1=1, ω2=1.4142, ω3=1.7321, Η=0.09

𝝀𝟏 ≈ 𝟎. 𝟎𝟑𝟕
slope=-(λ1-λ2)/ln(10)

𝝀𝟐 ≈ 𝟎. 𝟎𝟏𝟏



Behavior of SALI for regular motion

Regular motion occurs on a torus and two different initial

deviation vectors become tangent to the torus, generally

having different directions.
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SALI – Hénon-Heiles system

For E=1/8 we consider the orbits with initial conditions:

Regular orbit, x=0, y=0.55, px=0.2417, py=0

Chaotic orbit, x=0, y=-0.016, px=0.49974, py=0

Chaotic orbit, x=0, y=-0.01344, px=0.49982, py=0

As an example, we consider the 2D Hénon-Heiles system:

𝑯 =
𝟏

𝟐
𝒑𝒙

𝟐 + 𝒑𝒚
𝟐 +

𝟏

𝟐
𝒙𝟐 + 𝒚𝟐 + 𝒙𝟐𝒚 −

𝟏

𝟑
𝒚𝟑



SALI – Hénon-Heiles system

y

py



Applications – 4D map
1 1 2

2 2 1 2 1 2 3 4

3 3 4

4 4 3 4 1 2 3 4

x = x + x

x = x  -  sin(x  + x ) -  [1 - cos(x  + x  + x  + x )] 
(mod 2 )

x = x  + x

x = x  -  sin(x  + x ) -  [1 - cos(x  + x  + x  + x )] 

 


 









-3 -2 -1 0 1 2 3

X 
1

-3

-2

-1

0

1

2

3

X 
2 C D

For ν=0.5, κ=0.1, μ=0.1 we consider the orbits:

regular orbit C with initial conditions x1=0.5, x2=0, x3=0.5, x4=0.

chaotic orbit D with initial conditions x1=3, x2=0, x3=0.5, x4=0.

2 3 4 5 6 7

logN 

-6

-5

-4

-3

-2

-1

lo
g

L
 N

(a)

S., J. Phys. A (2001)
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Applications – 2D map

1 1 2

2 2 1 2

x = x + x
  (m od 2 )

x = x  -  sin (x  + x )








-3 -2 -1 0 1 2 3

X 
1

-3

-2

-1

0

1

2

3

X 
2 A B

For ν=0.5 we consider the orbits:

regular orbit A with initial conditions x1=2, x2=0.

chaotic orbit B with initial conditions x1=3, x2=0.

S., J. Phys. A (2001)



Behavior of the SALI

2D maps

SALI→0 both for regular and chaotic orbits

following, however, completely different time rates which

allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps

SALI→0 for chaotic orbits

SALI→constant ≠ 0 for regular orbits



The 

Generalized ALignment Indices  

(GALIs) 

method



Definition of the Generalized 

Alignment Index (GALI)
SALI effectively measures the ‘area’ of the parallelogram

formed by the two deviation vectors.
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𝐀𝐫𝐞𝐚 = ො𝐯𝟏⋀ො𝐯𝟐 =
ො𝐯𝟏 − ො𝐯𝟐 ⋅ ො𝐯𝟏 + ො𝐯𝟐

𝟐
=

𝐒𝐀𝐋𝐈 ⋅
𝐦𝐚𝐱 ො𝐯𝟏 − ො𝐯𝟐 , ො𝐯𝟏 + ො𝐯𝟐

𝟐
⇒

𝐀𝐫𝐞𝐚 ∝ 𝐒𝐀𝐋𝐈



In the case of an N degree of freedom Hamiltonian system we

follow the evolution of k deviation vectors with 2≤k≤2N, and

define [S. et al., Physica D (2007)] the Generalized Alignment

Index (GALI) of order k:

𝐆𝐀𝐋𝐈𝐤(𝐭) = ො𝐯𝟏(𝐭)  ∧  ො𝐯𝟐(𝐭) ∧  … ∧  ො𝐯𝐤(𝐭)

ො𝐯𝟏 𝐭 =
𝐯𝟏 𝐭

𝐯𝟏 𝐭
.

where

Definition of the Generalized 

Alignment Index (GALI)

Note that GALI2 (k=2) is equivalent to the Smaller Alignment

Index (SALI).



Behavior of the GALIk

Chaotic motion: GALIk (2≤k≤2N) tends exponentially to zero

with exponents which involve the values of the first k largest

Lyapunov exponents λ1, λ2, …, λk :

𝐆𝐀𝐋𝐈𝐤(𝐭)  ∝ 𝐞− (𝛌𝟏−𝛌𝟐)+(𝛌𝟏−𝛌𝟑)+...+(𝛌𝟏−𝛌𝐤) 𝐭

𝐆𝐀𝐋𝐈𝐤(𝐭) ∝  ቐ
constant if 𝟐 ≤ 𝐤 ≤ 𝐍

𝟏

𝐭𝟐(𝐤−𝐍)
if 𝐍 < 𝐤 ≤ 𝟐𝐍

Regular motion: When the motion occurs on an N-dimensional
torus then the behavior of GALIk is given by [S. et al., Physica D
(2007) – S. et al., Eur. Phys. J. Sp. Top. (2008)]:



Behavior of the GALIk for chaotic motion

N particles Fermi-Pasta-Ulam-Tsingou (FPUT) system: 

with fixed boundary conditions, N=8 and β=1.5.

𝐇 =
𝟏

𝟐
෍

𝐢=𝟏

𝐍

𝐩𝐢
𝟐 + ෍

𝐢=𝟎

𝐍
𝟏

𝟐
𝐪𝐢+𝟏 − 𝐪𝐢

𝟐 +
𝛃

𝟒
𝐪𝐢+𝟏 − 𝐪𝐢

𝟒

S. et al., Eur. Phys. J. Sp. Top. (2008)



Behavior of the GALIk for regular motion

N=8 FPUT system

S. et al., Eur. Phys. J. Sp. Top. (2008)



Global dynamics
• GALI2 (practically equivalent to the use of SALI)

• GALIN

Chaotic motion: GALIN→0 

(exponential decay)

Regular motion: 

GALIN  ≈ constant ≠ 0

3D Hamiltonian

Subspace q3=p3=0, p2≥0 for t=1000.

S. et al., Physica D (2007)



Global dynamics

GALIk with k>N

The index tends to zero both for

regular and chaotic orbits but with

completely different time rates:

Chaotic motion: exponential decay

Regular motion: power law

2D Hamiltonian (Hénon-Heiles)

Time needed for GALI4<10-12

S. et al., Physica D (2007)



A time-dependent 

Hamiltonian system



Barred galaxies
NGC 1433 NGC 2217



Barred galaxy model 
The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The

Hamiltonian that describes the motion for this model is:

2 2 21
( ) ( , , ) ( )

2
x y z b y xH p p p V x y z xp yp Energy= + + + − − 

This model consists of the superposition of potentials describing an axisymmetric

part and a bar component of the galaxy [Manos et al., J. Phys. A (2013)]. 

a) Axisymmetric component:

i) Plummer sphere: ii) Miyamoto–Nagai disc:

2 2 2 2
( , , ) S

sphere

s

GM
V x y z

x y z 
= −

+ + +
2 2 2 2 2

( , , )

( )

D
disc

GM
V x y z

x y A B z

= −

+ + + +

2 1

2 2 2
2 2 2 2 2

2 2 2

2

( , , ) (1 ( )) ,
1 ( )

 ( ) ,  ( ) ( )( )( ),

: positive integer ( 2 for our model) , : the unique positive solution of ( ) 1

nc
bar

du
V x y z Gabc m u

n u

x y z
where m u u a u b u c u

a u b u c u

n n m






 


+= − −
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Time-dependent barred galaxy model 
The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The

Hamiltonian that describes the motion for this model is:

2 2 2 ( , ,
1

( ) ( )
2

, )x y z b y xV x y z tH p p p xp yp Energy= + + + − − 

This model consists of the superposition of potentials describing an axisymmetric

part and a bar component of the galaxy [Manos et al., J. Phys. A (2013)]. 

a) Axisymmetric component:

i) Plummer sphere: ii) Miyamoto–Nagai disc:
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PSS (t = 1250)

PSS (t = 3750)

PSS (t = 6250)

PSS (t = 8750)

PSS (t = 11250)

Time-dependent 2D 

barred galaxy model 



Time-dependent 3D barred galaxy model 

Interplay between chaotic and regular motion



Chaos diagnostics based on 

Lagrangian descriptors (LDs)



Lagrangian descriptors (LDs)

The computation of LDs is based on the accumulation of some positive 

scalar value along the path of individual orbits.

Consider an N dimensional continuous time dynamical system

ሶ𝐱 =
𝐝𝐱(𝐭)

𝐝𝐭
= 𝐟(𝐱, 𝐭)

The Arclength Definition [Madrid & Mancho, Chaos (2009) – Mendoza & 

Mancho, PRL (2010) – Mancho et al., Commun. Nonlin. Sci. Num. Simul. 

(2013)].

Forward time LD:

𝐋𝐃𝐟(𝐱, 𝛕) = න
𝟎

𝛕

ሶ𝐱(𝐭) 𝐝𝐭

Backward time LD:

𝐋𝐃𝐛(𝐱, 𝛕) = න
−𝛕

𝟎

ሶ𝐱(𝐭) 𝐝𝐭

Combined LD:

𝐋𝐃 𝐱, 𝛕 = 𝐋𝐃𝐛 𝐱, 𝛕 + 𝐋𝐃𝐟(𝐱, 𝛕)



LDs: 1 degree of freedom (dof) Hamiltonian

The system has a hyperbolic fixed point at the origin. The LDs can be used to 

display the stable and unstable manifolds of this point. 

𝑳𝑫𝒇

Stable manifold

𝑳𝑫𝒃

Unstable manifold

𝑳𝑫
Both manifolds

𝑳𝑫𝒇

Stable manifold

𝑳𝑫𝒃

Unstable manifold

𝑳𝑫
Both manifolds

From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985



LDs: 1 dof Duffing Oscillator

The system has three equilibrium points: a saddle located at the origin and 

two diametrically opposed centers at the points ( ± 1, 0).

From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985

L
D

The location of the stable and unstable manifolds can be extracted from the 

ridges of the gradient field of the LDs since they are located at points where 

the forward and the backward components of the LD are non-differentiable. 



Lagrangian descriptors (LDs)
The ‘p-norm’ Definition [Lopesino et al., Commun. Nonlin. Sci. Num. 

Simul. (2015) – Lopesino et al., Int. J. Bifurc. Chaos (2017)].

Combined LD (usually p=1/2):

𝐋𝐃(𝐱, 𝛕) = න
−𝛕

𝛕

෍
𝐢=𝟏

𝐍

𝐟𝐢(𝐱, 𝐭) 𝐩 𝐝𝐭

Hénon-Heiles system:  𝐇 =
𝟏

𝟐
𝐩𝐱

𝟐 + 𝐩𝐲
𝟐 +

𝟏

𝟐
𝐱𝟐 + 𝐲𝟐 + 𝐱𝟐𝐲 −

𝟏

𝟑
𝐲𝟑

Stable and unstable manifolds for H=1/3, τ=10.

From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985



Using LDs to quantify chaos

Hillebrand et al., Chaos (2022) – Zimper et al., Physica D (2023) 

We consider orbits on a finite grid of an n(≥1)-dimensional subspace of the 

N(≥n)-dimensional phase space of a dynamical system and their LDs. 

Any non-boundary point x in this subspace has 2n nearest neighbors 

𝐲𝐢
± = 𝐱 ± 𝛔(𝐢)𝐞(𝐢), 𝐢 = 𝟏, 𝟐, … , 𝐧,

where 𝐞(𝐢) is the ith usual basis vector in ℝ𝒏 and 𝛔(𝐢) is the distance between 

successive grid points in this direction.

The difference 𝐃𝐋
𝐧 of neighboring orbits’ LDs:

𝐃𝐋
𝐧(𝐱) =

𝟏

𝟐𝐧
෍

𝐢=𝟏

𝐧
𝐋𝐃𝐟 𝐱 − 𝐋𝐃𝐟(𝐲𝐢

+) + 𝐋𝐃𝐟 𝐱 − 𝐋𝐃𝐟(𝐲𝐢
−)

𝐋𝐃𝐟(𝐱)
.

The ratio 𝐑𝐋
𝐧 of neighboring orbits’ LDs:

𝐑𝐋
𝐧(𝐱) = 𝟏 −

𝟏

𝟐𝐧
෍

𝐢=𝟏

𝐧
𝐋𝐃𝐟 𝐲𝐢

+ + 𝐋𝐃𝐟(𝐲𝐢
−)

𝐋𝐃𝐟(𝐱)
.



Application: Hénon-Heiles system

chaotic orbit

regular orbit



Application: Hénon-Heiles system
Variation of LDs with 

regard to initial 

conditions. 

regular regions: smooth

chaotic regions: erratic
[also see Montes et al., 

Commun. Nonlin. Sci. Num. 

Simul. (2021)]

H=1/8

LDs for τ=103

SALI for τ=106 

(inset τ=103)



Application: Hénon-Heiles system

𝐃𝐋
𝐧 SALI𝐑𝐋

𝐧

Misclassified orbits (< 10%)

𝐃𝐋
𝐧 𝐑𝐋

𝐧



Application: Hénon-Heiles system

A quantity related to the second derivative of the LDs was introduced in Daquin 

et al., Physica D (2022) and was used in Hillebrand et al., Chaos (2022) and 

Zimper et al., Physica D (2023): 

𝚫𝐋𝐃 (𝐱) =
𝐋𝐃𝐟 𝐲𝐢

+ − 𝟐𝐋𝐃𝐟 𝐱 + 𝐋𝐃𝐟(𝐲𝐢
−)

𝛔𝟐
.



Summary I
• We discussed methods of chaos detection based on

✓ the visualization of orbits

✓ the numerical analysis of orbits

✓ the evolution of deviation vectors (variational equations – tangent map)

• The Smaller (SALI) and the Generalized (GALI) ALignment Index methods are fast,
efficient and easy to compute chaos indicator.

• Behaviour of the Generalized ALignment Index of order k (GALIk):

✓ Chaotic motion: it tends exponentially to zero

✓ Regular motion: it fluctuates around non-zero values (or goes to zero following
power-laws)

• GALIk indices :

✓ can distinguish rapidly and with certainty between regular and chaotic motion

✓ can be used to characterize individual orbits as well as "chart" chaotic and
regular domains in phase space

✓ can identify regular motion on low–dimensional tori

✓ are perfectly suited for studying the global dynamics of multidimentonal
systems, as well as of time-dependent models



Summary II
• We introduced and successfully implemented computationally efficient ways

to effectively identify chaos in conservative dynamical systems from the
values of LDs at neighboring initial conditions.

• From the distributions of the indices’ values we determine appropriate
threshold values, which allow the characterization of orbits as regular or
chaotic.

• Both indices faced problems in correctly revealing the nature of some orbits
mainly at the borders of stability islands.

• Both indices show overall very good performance, as their classifications are
in accordance with the ones obtained by the SALI at a level of at least 90%
agreement.

• Advantages:

✓ Easy to compute (actually only the forward LDs are needed).

✓ No need to know and to integrate the variational equations.

• These methods has also been successfully applied to 2D and 4D symplectic
maps [Hillebrand et al., Chaos (2022) – Zimper et al., Physica D (2023)]
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