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Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous
Hamiltonian system having a Hamiltonian function of the

form: positions momenta
A A

H(1,00+++s0n» P1P2se++sPR)

The time evolution of an orbit (trajectory) with initial
condition

P(0)=(q,(0), 9,(0),...,0,(0), p;(0), p,(0),...,p\(0))

IS governed by the Hamilton’s equations of motion

dt ~ dq; ' dt ap;



Variational Equations

We use the notation X = (4;,d5,.-«,dnsP1:Pose-:Pr) "~ The
deviation vector from a given orbit is denoted by

V = (8Xy, 0Xp...,0X )", With N=2N

The time evolution of v Is given by
the so-called variational equations:

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93



Symplectic Maps

Consider an 2N-dimensional symplectic map T. In this
case we have discrete time.

The evolution of an orbit with initial condition
P(0)=(x,(0), X,(0),...,x,5(0))

IS governed by the equationsof map T
PGi+1)=T P() , i=0,1,2,...

The evolution of an initial deviation vector
v(0) = (8%,(0), 8X,(0),..., X, (0))
IS given by the corresponding tangent map

oT
vi+1)=—| -v(i),i=0,1,2,..
oP|



Chaos detection techniques

Based on the visualization of orbits
v Poincaré Surface of Section (PSS)
v' the color and rotation (CR) method
v" the 3D phase space slices (3PSS) technique



Poincaré Surface of Section (PSS)
/

We can constrain the study of an N+1
degree of freedom Hamiltonian system
to a 2N-dimensional subspace of the
general phase space.

In this sense an N+1 degree of freedom
Hamiltonian system corresponds to a
2N'dimen5i0na| SympleCtiC map. Lieberman & Lichtenberg, 1992, Regular and Chaotic

Dynamics, Springer.
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The color and rotation (CR) method

For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic
maps:

We consider the 3D projection of the PSS and use color to indicate the 4t
dimension.

X —-0.1

Katsanikas & Patsis, Int. J. Bif. Chaos (2011)



The 3D phase space slices (3PSS)
technique

For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic
maps:

We consider thin 3D phase space slices of the 4D phase space (e.g. |p,| < €)
and present intersections of orbits with these slices.

Richter et al., Phys. Rev. E (2014)



Chaos detection techniques

Based on the visualization of orbits
v" Poincaré Surface of Section (PSS)
v" the color and rotation (CR) method
v" the 3D phase space slices (3PSS) technique
Based on the numerical analysis of orbits
v" Frequency Map Analysis
v 0-1 test



Frequency Map Analysis

Create Frequency Maps by computing the fundamental frequencies of orbits.

Regular motion: The computed frequencies do not vary in time

Chaotic motion: The computed frequencies vary in time

Frequency Maps — Boxes
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Frequency Map Analysis

Stability of Trojan asteroids, (a, €)
diagram [Robutel & Gabern, MNRAS
(2006)]

Dynamics of the European Synchrotron Radiation Facility (ESRF) storage ring

[S. etal., 2004, in Proc. of the 9th Euro
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Chaos detection techniques

Based on the visualization of orbits
v" Poincaré Surface of Section (PSS)
v" the color and rotation (CR) method
v" the 3D phase space slices (3PSS) technique

Based on the numerical analysis of orbits

v" Frequency Map Analysis

v' 0-1 test
Chaos indicators based on the evolution of deviation vectors from
a given orbit

v" Maximum Lyapunov Exponent (MLE)

v’ Fast Lyapunov Indicator (FLI) and Orthogonal Fast Lyapunov
Indicators (OFLI and OFLI2)

v" Mean Exponential Growth Factor of Nearby Orbits (MEGNO)
v Relative Lyapunov Indicator (RLI)

v" Smaller ALignment Index — SALI

v Generalized ALignment Index — GALI



Maximum Lyapunov Exponent (MLE)

Chaos: sensitive dependence on initial conditions.

Roughly speaking, the MLE of a given orbit characterizes the mean exponential

rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0)
and an initial deviation vector (small perturbation) from it v(0).

Then the mean exponential rate of divergence is:

MLE= A; = lim A (£) = lim 21n 1*®!

t—oo tooot lv(0)]|

1072
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Figure 5.7. Behavior of o , at the intermediate energy E = 0.125 for initial points
taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions {after Benettin

et al., 1976).



The
Smaller ALignment Index
(SALI)
method



Definition of the SALI

We follow the evolution in time of two different initial
deviation vectors (v,(0), v,(0)), and define SALI [S., J.
Phys. A (2001) — S. & Manos, Lect. Notes Phys. (2016)] as:

SALI(t) = ming||v,(t) + V2 (O], [[V1 (1) — V2 (O I3

where
vy (D)

Vi(t) =
NAOI
When the two vectors become collinear

SALI(t) — 0




Behavior of SALI for chaotic motion

For chaotic orbits the two Initially
different deviation vectors tend to
coincide with the direction defined
by the maximum Lyapunov

exponent.
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Behavior of SALI for chaotic motion

For chaotic orbits the two Initially
different deviation vectors tend to
coincide with the direction defined
by the maximum Lyapunov /.- e
xponent. ~
exponent v, (t)

v, (1)

v, (1)
SALI(t)

eV, (1)
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Behavior of the SALI for chaotic motion

We test the validity of the approximation|SALIx e~“41=42)t[[S et al.,
J. Phys. A (2004)] for a chaotic orbit of the 3D Hamiltonian

with ©,=1, ©,=1.4142, ©,=1.7321, H=0.09
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Behavior of SALI for regular motion

Regular motion occurs on a torus and two different initial
deviation vectors become tangent to the torus, generally
having different directions.
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SALI — Hénon-Heiles system

As an example, we consider the 2D Heénon-Heiles system:
1 1 1
H = E(szc +p3?) +E(x2 + y?%) +x2y—§y3

For E=1/8 we consider the orbits with initial conditions:
Regular orbit, x=0, y=0.55, p,=0.2417, p, =0

Chaotic orbit, x=0, y=-0.016, p,=0.49974, p,=0

Chaotic orbit, x=0, y=-0.01344, p,=0.49982, p,=0

0.5 ok

log(SALI)
do

12 +

-16




SALI — Hénon-Heiles system

. Bl log(SALI) <-12
= N Bl -12 <log(SALI) < -8
-8 < log(SALI) < -4
-4 < log(SALI)




Applications — 4D ma

= X1+X2
= X,-vsin(x; +X,)-u[l-cos(x, + X, + X, +X,)]

(mod 27)
= X;t+X,

X X X X
A WS NS P
|

= X, -kSIin(X; +Xx,)-u[1-cos(X, +X,+X; +X,)]

For v=0.5, ¥=0.1, u=0.1 we consider the orbits:
regular orbit C with initial conditions x,=0.5, x,=0, Xx,=0.5, x,=0.
chaotic orbit D with initial conditions x,=3, X,=0, x,=0.5, x,=0.

logl

S., J. Phys. A (2001)
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Applications — 4D map
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S., J. Phys. A (2001)
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Applications — 2D map

X; = X, tX,

, _ (mod 27)
X, = X,-vsin(Xx,+X,)

For v=0.5 we consider the orbits:
regular orbit A with initial conditions x,=2, X,=0.
chaotic orbit B with initial conditions x,=3, x,=0.

S., J. Phys. A (2001)



Behavior of the SALI

2D maps
SALI—0 both for regular and chaotic orbits

following, however, completely different time rates which
allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps
SALI—0 for chaotic orbits

SALI—constant # (0 for regular orbits




The
Generalized ALIgnment Indices
(GALISs)
method



Definition of the Generalized
Alignment Index (GALI)

SALI effectively measures the ‘area’ of the parallelogram
formed by the two deviation vectors.
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Definition of the Generalized
Alignment Index (GALI)

SALI effectively measures the ‘area’ of the parallelogram
formed by the two deviation vectors.

11 — Vo[ - [V + 02|
A A N 2 L
max{ ||V; — V|, [[Vy + V2][}

2
Area « SALI

Area = ||V AV, =

SALI -



Definition of the Generalized
Alignment Index (GALI)

In the case of an N degree of freedom Hamiltonian system we
follow the evolution of k deviation vectors with 2<k<2N, and
define [S. et al., Physica D (2007)] the Generalized Alignment
Index (GALLI) of order k:

where

vy (t)

1O = o

Note that GALI, (k=2) is equivalent to the Smaller Alignment
Index (SALI).



Behavior of the GALI,

Chaotic motion: GALI, (2<k<2ZN) tends exponentially to zero
with exponents which involve the values of the first k largest
Lyapunov exponents A, &,, ..., A, :

GALI, (t) o e [A1=22)+(R1-23)+.+ (A1 —-Ap)]t

Regular motion: When the motion occurs on an N-dimensional
torus then the behavior of GALI, is given by [S. et al., Physica D
(2007) — S. et al., Eur. Phys. J. Sp. Top. (2008)]:

(constant if 2<Kk<N

ALI} (t) x 1
GALL(1) o< < i iff N<k<2N
\




Behavior of the GALI, for chaotic motion

N particles Fermi-Pasta-Ulam-Tsingou (FPUT) system:

N N
1 1 8
H = EZ pi + Z [E (Qiv1 — q)* + 7 (di+1 — %)4]
i= i=

with fixed boundary conditions, N=8 and p=1.5.
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S.etal., Eur. Phys. J. Sp. Top. (2008)



Behavior of the GALI, for regular motion

N=8 FPUT system

obe_.  GAL,  (b)]
AN GALI, |
] GALI, |
GALI,
) )
- -
(<D 4 L Y g -15 |
5 ALl | 5
o L= 20 |-
ol . - slope=-4
GAL'8 25 1 slope=-8
slope=-12
B slope=-16 GAL'16
-8 1 1 L 1 1 l 1 1 1 | 1 1 L _30 . | | L | L | 1 | L
25 3.0 3.5 4.0 4.5 5.0 5.5 6.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0
log(t) log(t)

S.etal., Eur. Phys. J. Sp. Top. (2008)



Global dynamics
« GALLI, (practically equivalent to the use of SALI)

* GALI

Chaotic motion: GALI—0
(exponential decay)
Regular motion:

GALI = constant # 0

0
-2
Chaotic orbit .
4 - Regular orbit
- 6 .
2
e °r ]
o> i
i) 10 -
12 - .
14 L .
-16 ! ! " | "
0 200 400 600 800 1000

S.etal., Physica D (2007)

3D Hamiltonian
Subspace g;=p;=0, p,=0 for t=1000.
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Global dynamics

GALI, with k>N

The index tends to zero both for
regular and chaotic orbits but with
completely different time rates:

Chaotic motion: exponential decay
Regular motion: power law

I ! I ! I ! I '
Chaotic orbit — -
Regular orbit —— -

log(GALI,)

0 100 200 300 400 500

S.etal., Physica D (2007)

2D Hamiltonian (Hénon-Heiles)
Time needed for GALI <1012




A time-dependent
Hamiltonian system



Barred galaxies

NGC 1433 NGC 2217




Barred galaxy model

The 3D bar rotates around its short z-axis (X: long axis and y: intermediate). The
Hamiltonian that describes the motion for this model is:

1
H :E(pf +p; + P2)+V(X,Y,2) - Q, (xp, — yp,) = Energy

This model consists of the superposition of potentials describing an axisymmetric
part and a bar component of the galaxy [Manos et al., J. Phys. A (2013)].

a) Axisymmetric component:

1) Plummer sphere: 1) Miyamoto—Nagai disc:
GM GM,
V X, ¥,Z)=— S Vdisc(x’ y,Z):—
stere(%1,2) \/x2+y2+22+552 \/x2+y2+(A+\/Bz+22)2

b) Bar component:v, (x,y,z)=-zGabc-£2 j“’ au @L-m*(u))™,

n+174 A(u)
Ferrers bar ’ ’ ’
( ) where m*(u) = 2X + Zy + 22 , A*(u) = (a® +u)(b® +u)(c® +u),
105 GM, a“+u b°+u c"+u
Pec = 327 abc n : positive integer (n = 2 for our model) , A: the unique positive solution of m*(1) =1
ity is: 1-m?)", form<1 x> y* z?
Its density Is: p= Pl ) wherem? =2+ 4 ~,a>b>candn=2.

0, form>1 a’ b® ¢



Time-dependent barred galaxy model

The 3D bar rotates around its short z-axis (X: long axis and y: intermediate). The
Hamiltonian that describes the motion for this model is:

1
H :E(pi + p}2/ + p22)+V(X, y,Z,t)—Qb(Xpy - ypx) = Energy

This model consists of the superposition of potentials describing an axisymmetric
part and a bar component of the galaxy [Manos et al., J. Phys. A (2013)].

a) Axisymmetric component: Mg +Mg(t) + My (t) =1 with Mg(t) =M;(0) +at
1) Plummer sphere: 1) Miyamoto—Nagai disc:
GM GM,, (1)
V X\Y,2)=— 3 Vdisc(x’ y,Z):—
stere(%1,2) \/x2+y2+22+552 \/x2+y2+(A+\/m)2

b) Bar component:v — _aGabeLe [" 4 m2ay)
) p bar(X1y1 Z) T n+1J"1 A(U)( (U)) '
Ferrers bar 2 2 2
( ) where m*(u) = 2X + Zy + ZZ , A*(u) = (a® +u)(b® +u)(c® +u),
105 GM , (t) a+u b°+u c°+u
Pe = 327 abc 4™ positive integer (n = 2 for our model) , A: the unique positive solution of m*(1) =1

ity s 1-m?)", form<1 VAR &
Its density Is: p= Pl ) ,WheremZ:X2+y2+Zz,a>b>candn:2.
0, form>1 a~ b ¢
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Time-dependent 3D barred galaxy model

Interplay between chaotic and regular motion
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Chaos diagnostics based on
Lagrangian descriptors (LDs)



LLagrangian descriptors (LDs)

The computation of LDs is based on the accumulation of some positive
scalar value along the path of individual orbits.

Consider an N dimensional continuous time dynamical system

. dx(t)
X =— = f(x,t)

The Arclength Definition [Madrid & Mancho, Chaos (2009) — Mendoza &
Mancho, PRL (2010) — Mancho et al., Commun. Nonlin. Sci. Num. Simul.
(2013)].

Forward time LD:
LD!(x, 1) = jTIIX(t)IIdt
Backward time LD: :
LDP(x, 1) = jOIIX(t)IIdt
—1

Combined LD:
LD(x,t) = LDP(x, 1) + LD!(x, 1)



LLDs: 1 degree of freedom (dof) Hamiltonian

H@Jﬂ=%@ﬂ—qﬂ

The system has a hyperbolic fixed point at the origin. The LDs can be used to
display the stable and unstable manifolds of this point.

LDf LD? LD
Stable manifold Unstable manifold Both manifolds
1.0 1.0
0.5
o 0.0 0.5
—0.5 1
-1.0 . 0.0

10 -05 00 05 1.0-1.0 -05 00 05 1.0-1.0 -05 00 05 10
q q q

From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985



LLDs: 1 dof Duffing Oscillator

1 1
— 2, _.4_ 2
H(x, y) 2y + 4x 2x
The system has three equilibrium points: a saddle located at the origin and

two diametrically opposed centers at the points ( + 1, 0).

30 :
= 25+
I
\ 20
My
o
Homoclinic I
orbit " 15¢
Center Saddle 5
10+
(A
— Ma\nifold X Manifold
5 - . .
-1 0 1 2 1 0 3 5
v T

From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985

The location of the stable and unstable manifolds can be extracted from the
ridges of the gradient field of the LDs since they are located at points where
the forward and the backward components of the LD are non-differentiable.



L_agrangian descriptors (LDs)

The ‘p-norm’ Definition [Lopesino et al., Commun. Nonlin. Sci. Num.
Simul. (2015) — Lopesino et al., Int. J. Bifurc. Chaos (2017)].
Combined LD (usually p=1/2):

T N
LD(x, 1) = f (z Ifi(x,t)|p>dt
—-T i=1

, i _ 1 1 1
Hénon-Heiles system: H = _(p} +pj) +; (x> +y*) + x%y - 5y’
Stable and unstable manifolds for H=1/3, t=10.
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From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985



Using LDs to quantify chaos

We consider orbits on a finite grid of an n(>1)-dimensional subspace of the
N(>n)-dimensional phase space of a dynamical system and their LDs.
Any non-boundary point x in this subspace has 2n nearest neighbors

yli =X i G(l)e(l), i = 1, 2, .., n,

where e s the ith usual basis vector in R™ and ¢ is the distance between
successive grid points in this direction.

The difference D{ of neighboring orbits’ LDs:

aror _ 1 X7 [LDF() — LD (y")| + |LDf(x) — LD (y))]
L(X) — ﬁ; LDf(X) '

The ratio R} of neighboring orbits’ LDs:

1 ~ LDf(y") + LDf(y;
100 = |1 - 3RO LRG0 |

1 —
2n LDf(x)

i=1

Hillebrand et al., Chaos (2022) — Zimper et al., Physica D (2023)



Application: Hénon-Heiles system
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Application: Henon-Heiles system

H=1/8

LDs for t=103
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Application: Henon-Heiles system
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Application: Henon-Heiles system

A gquantity related to the second derivative of the LDs was introduced in Daquin
et al., Physica D (2022) and was used in Hillebrand et al., Chaos (2022) and
Zimper et al., Physica D (2023):

LD'(y;") — 2LD'(x) + LD'(y;)

IALDI|(x) = ‘
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Summary |

We discussed methods of chaos detection based on
v" the visualization of orbits
v the numerical analysis of orbits
v" the evolution of deviation vectors (variational equations —tangent map)

The Smaller (SALI) and the Generalized (GALI) ALignment Index methods are fast,
efficient and easy to compute chaos indicator.

Behaviour of the Generalized ALignment Index of order k (GALI,):
v Chaotic motion: it tends exponentially to zero

v Regular motion: it fluctuates around non-zero values (or goes to zero following
power-laws)

GALI, indices :
v’ can distinguish rapidly and with certainty between regular and chaotic motion

v" can be used to characterize individual orbits as well as "‘chart" chaotic and
regular domains in phase space

v’ can identify regular motion on low—dimensional tori

v are perfectly suited for studying the global dynamics of multidimentonal
systems, as well as of time-dependent models



Summary I

We introduced and successfully implemented computationally efficient ways
to effectively identify chaos in conservative dynamical systems from the
values of LDs at neighboring initial conditions.

From the distributions of the indices’ values we determine appropriate
threshold values, which allow the characterization of orbits as regular or
chaotic.

Both indices faced problems in correctly revealing the nature of some orbits
mainly at the borders of stability islands.

Both indices show overall very good performance, as their classifications are
In accordance with the ones obtained by the SALI at a level of at least 90%
agreement.

Advantages:
v Easy to compute (actually only the forward LDs are needed).
v No need to know and to integrate the variational equations.

These methods has also been successfully applied to 2D and 4D symplectic
maps [Hillebrand et al., Chaos (2022) — Zimper et al., Physica D (2023)]
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